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Abstract. Nonadmissible, weakly admissible and admissible cyclic representations and other
algebraic properties of the generalized homographic oscillator (GHO) are studied in detail. For
certain ranges of the deformation parameter, it is shown that this new deformed oscillator is a
prototype cyclic oscillator endowed with a non-negative (admissible) spectrum. By changing the
deformationparameter, the cyclic spectrum can be tuned to have an arbitrarily large period. Itis
shown that the standard harmonic oscillator is recovered at the nonadmissible infinite-period limit
of the GHO. With these properties, the GHO provides a concrete example of an oscillator rich
in a variety of cyclic representations. It is well known that such representations are of relevance
to the proper algebraic formulation of the quantum-phase operator. Using a general scheme,
it is shown that admissible cyclic algebras permit a well-defined Hermitian phase operator of
which properties are studied in detail at finite periods as well as at the infinite-period limit.
Fujikawa'’s index approach is applied to admissible cyclic representations and in particular to
the phase operator in such algebras. Using the specific example of GHO it is confirmed that
the infinite-period limit is distinctively singular. The connection with the Pegg—Barnett phase
formalism is established in this singular limit as the period of the cyclic representations tends
to infinity. The singular behaviour at this limit identifies the algebraic problems, in a concrete
example, emerging in the formulation of a standard quantum harmonic-oscillator phase operator.

1. Introduction

Admissible cyclic representations are crucial for the rigorous formulation of the quantum-
phase operator. The classification of certain algebras which permit periodic action of
the operators have been made by DeConcini and Kac [1]. Specific examplés(@f
when G defines a simple complex Lie algebra have been examined by Dobrev [2] and
more recently by Abdesselaet al [3]. Periodic representations of generally deformed
oscillators (in which Weyl-Heisenberg, Fibonacci and Biedenharn—Macfarlane oscillators
are special cases) and their connection with the Hermitian quantum-phase problem has
been recently noted by Fu and Sasaki [4]. In all known algebras which permit periodic
representations with a periodf(+ 1), the complex deformation parametgrbecomes a

root of unity. Two distinct cases are identified whghi™! = 1. In the first case the spectrum
includes a zero and the spectral raising and lowering operatérs, a™+1 are nilpotent
(i.e.aM*! = 4tM+1 = 0). The zero in the periodic spectrum is the eigenvalue of the vacuum
state such tha&|0) = af|M) = 0 and the periodic representations of these oscillators are
similar to the regular representation of the harmonic oscillator using the Fock state. These
are weakly admissible cyclic representations (ACR) within the context of this work. In
the second case, in which the periodic spectrum does not involve a zero, the generally
deformed oscillator can have admissibly cyclic representations suctithdt = af¥+!
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and the operatord”+! anda”+! become the central elements of the generally deformed
oscillator algebra.

In terms of a periodic representation, a generally deformed oscillator can be described
by the action of the raising', and lowering, operators on theM + 1)-dimensional Fock
spacelry, as,

aln) = fmY?n -1  n#0

a'ln) = f(n+ D"’ + 1) n#M
aloy = fOY2pIM)  |Bl=1
a'|M) = f(M + DV?"0)

@)

such thataF(N) = F(N + Da and a'F(N + 1) = F(N)al. Here, f(n) is the
eigenvalue of the generalized number operatar= F(N) andaa’ = F(N + 1) such that
F(N)|n) = fm)|n), whereln)(n = 0,1, ..., M) are vectors irfy,. The (M + 1) periodic
representations are implied by the cyclic propeftyN) = F(N + M + 1) and

aMLE(N) = F(N + M + Dat™*t = F(W)ya™

N R R 2
FN)aM+t = gMHrE(N + M + 1) = aMTLF(N). @)

One also has the following relations
a™*an) = fFYH M fr+ D .. fr+ MY+ M) @)

aa™n) = fr+ M+ DY (f(n+Df(n+2) ... f(r+ M+ D)}?n + M).

Comparing equations (3) we havéM**, af] = 0. This result and equations (2) imply
[aM+1, F(N)] = 0. Thus,aM+t, at"+1 gre the central elements of the corresponding
algebra bya,at, F(N). We define (weakly) admissible cyclic representations (W)ACR
with a (non-negative) positive cyclic spectrum as<0f(n). For those with positive as

well as negative parts in the cyclic spectrum we use the nomenclature nonadmissible cyclic
representations (NCR). Fu and Sasaki [4] have discussed the conditions for ACR of the
generally deformed oscillators from the perspective of Hermitian quantum-phase operator.

The generalized two-parameter Fibonacci oscillator

N _ N
[N]] =2 "2 (4)
rpa—rp

does not permit ACR whem; and r, are roots of unity. The Biedenharn—Macfarlane
oscillator and the naivej-deformed oscillator correspond to the specific examples of
equation (4) wherr; = r2_1 andr; # rp,rp = 1 respectively. Hence the latter two
oscillators also do not have ACR which is, in particular, crucial for the proper examination
of the quantum phase operator.

In section 2, we will first examine the properties of all periodic representations of the
generalized homographic oscillator (GHO) with particular emphasis on the admissible and
weakly admissible ones. Section 3 is devoted to the formulation of an algebraic approach
to the quantum-phase problem for a generally deformed oscillator with finite-dimensional
(W)ACR. We then examine Fujikawa’s index theorem which puts a stringent condition for
the existence of an acceptable phase operator. It is shown that any WACR and ACR satisfy
this index condition. The singularity at the limif = oo is explicitly shown by using the
WACR and ACR of the generalized homographic oscillator. The connections are established
with the harmonic-oscillator phase at this singular limit.
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2. The generalized homographic oscillator

Recently, we have discussed a new species of the generalized deformed oscillator family,
which, arises in the stereographic deformations of the invariant manifolds of the SU(2) and
SU(1,1) algebras [5]. The algebra of this deformed oscillator is given by a generalized
commutation relation in the form of a homographic function of the generalized number
operator, hence, the name generalized homographic oscillator (GHO). The properties of
the GHO in connection with the stereographic deformation of SU(2) and SU(1,1) have
been examined in detail in [5]. The importance of this deformed oscillator lies in the
fact that it naturally conforms to all the generic features of the periodic algebras enlisted
in equations (1)—(3) in certain ranges of the deformation parameter which makes a useful
algebraic tool to study the properties of quantum phase.
The GHO can be parametrized by,

() =a(y)  wna=(2 ) 5

where p, k € R. Associatingf(n) = «,/B, with f(n) < a'a and f(n + 1) < aa' the
generalized commutation relation of the GHO algebra has been obtained in [5] as,

aat = PEAHL ©)
kata +1
We will consider the case det = 1 for simplicity. Of particular importance for the
algebraic formulation of quantum-phase problems is the condition for a periodic spectrum.
The eigenvalues of the matri® are,

Mz = ltr(A) £ Vtr(A)]2 — 4detA)] = |112/€” @

where t(A) = p + 1 and detA) = p — k. The (M + 1)-dimensional periodic spectrum is
obtained when the square root is negative and 7h/(M + 1) leading to the periodicity
condition

k+2=2costh/(M + 1) whereh € Z and 0< h < M with —4 <k <0. (8)

At this level we have not imposed any particular representation, and, the condition for
periodicity is independent of the representation used. The GHO admits a variety of cyclic
representations. These are nonadmissible cyclic, weakly admissible cyclic and admissible
cyclic ones identified by distinct ranges of the deformation parameter. The period of the
cyclic representations becomes infinite at the values—4 and 0. In what follows within
section 2, we will deliberately avoid these points in the range wdlues and only consider

the limiting case%k — 4* or k — 0~ when necessary.

2.1. Non-admissible cyclic representations

The NCR admit the vacuum conditiofi(0) = 0. Using equation (6) the solution for the
spectrum is found from [5]

[[n]] i —r
n)= —————— h =
=ty —m—y  Vreell=T —, ©
Herery, rp satisfy
ritert=1+p and  (u)l=p-k=1 (10)

The first equation in (9) implies that the homographic oscillator specifgm is a specific
radial deformation of the Fibonacci oscillator spectruni][hs given by the second equation
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there. Sincer; = rz_l for det4 = 1, the spectrum {{]] coincides with that of the
Biedenharn—Macfarlane oscillator. The cyclic properties of the GHO spectrum are directly
connected to those in the underlying Fibonacci oscillator where r;l =r =6 and
¢ =nmh/(M + 1) from equations (10). The cyclic spectrum can be expressed by
sinfrnh/(M + 1)]
7= gn [rnh/(M 4+ )] —sinfz(n — Dh/(M + 1D)]’

Cyclic representations of the Fibonacci oscillator have been examined in [6]. The spectral
eigenvalues can be mapped on the unit circle with symmetric and regular spacing. Both for
the Fibonacci and the GHO, these representations are nonadmissible for sest!/ M+
because of the fact that they correspond to negative spectral vAlugsfor the second
half of the spectrum. Nonadmissible periodic representations with arbitrary periods can be
found within the entire range-4 < k < 0. The operatorg”+1; 4t"+1 are nilpotent and
the eigenvalues found from equation (11) are distributed on both sides of the vacuum state
f(0) = 0. The distribution of the spectral eigenvalues are indicated in figure 1 for various
h and M values. For illustrative purposes, the spectral eigenvalues are traced by the tip of
the phasor, = f(n)Y/2é" where f(n) is given by equation (11) and = 7h/(M + 1).
The nodes on the curves correspond to the zero crossinfi&épfwhere, due to the change
in sign of f(n), the phase of, is shifted in discrete steps af/2.

From equation (11) it is clear that, the spectrum of NCR for the GHO are not evenly
distributed in the entire range of allowddvalues. They are the only ones present for
—2 < k < 0 whereas they mix with the (W)ACR in the second rangké< k < —2 (see
below). The most important limiting case of NCRks=0". Ask — 0, r = 1+ ie with
€ = «/—k describing a small parameter. It can be seen in equations (9) and (10) that, in
this limit, both the Fibonacci oscillator and the GHO contract onto the standard harmonic
oscillator (i.e. [k]] — n, f(n) — n) with the spectral period approaching infinity. Namely,
the harmonic oscillator is the infinite-period limit of the NCR corresponding te- 0~.
As a severe consequence of that, an algebraic polar decomposition of the generators is not
admitted and the search for unitarity of the phase operator becomes a hopeless task unless
the algebraic properties are completely abandoned.

(11)

2.2. Weakly admissible cyclic representations

Although the cyclic representations of the underlying Fibonacci oscillator are always
nonadmissible within the entire ranged < k < 0, weakly admissible ones are permitted
for the GHO exclusively in the range4 < k < —2, where, they coexist with NCR. For
WACR, the spectrum is allowed to have a vacuum state fi(@) = 0) but all other spectral
eigenvalues are positively defined. In this range, WACR are associated with specific values
of k which yield [[r]] « (—1)" so that f(n) in equation (9) is always non-negative for

0 < n. Since the vacuum state is preseif,"!; a™+* are nilpotent. The number of such
WACR for a particularM depends on the allowed values/of Since—4 < k < —2 implies

% <h/(M+1) < g the number of such representations for a particars 2(M + 1).

As k - —4, M — oo and WACR become increasingly dense. The spectral eigenvalues
for a fewk values are shown in figure 2 in the same phasor sheme of figure 1.

2.3. Admissible cyclic representations

For a general reference statg0) the solution of equation (6) yields for the spectrum,
Fn) = [1 - fOIll~]] + fOll~n+1]]
[1 4+ kfOIl[~]] — [[n — 1]]

(12)
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Figure 1. The closed trajectories of the spectral eigenvalygs) in the phasor scheme

7 = f(m)Y2e"¥ of NCR. The sign off(n) are indicated within individual lobes. The zero
crossing of f(n) are represented by the nodes. The main figures are exploded in the vicinity
of the origin in order to show how the sign change occurs for different winding numbers

h=12234andM = 304. Since, NCR are dense in the— 0~ limit, we have chosen

h, M such thath /(M + 1) « 1. The inlets are included to indicate the symmetry of the full

trajectories.

where [z]] is still given by the Fibonacci oscillator spectrum in equation (9). F@®) = 0

one recovers equation (9). The GHO described by the spectrum in equation (12) admits a
large family of ACR in the range-4 < k < —2, with infinite variety of periods, where, the

admissibility condition O< f(n) is always satisfied in certain bands in t}i€0) — k space.
For typical M and i values some of these bands are shown in figure 3. ROy < 1

there are forbidden zones where no admissible solution is found. Whereas, all solutions

corresponding to X f(0) are admissible for the santevalues. In figure 4 the distribution
of the spectral eigenvalues are plotted for certi®) < 1 and 1< f(0) respectively as
M andh are chosen properly to complement the picture in figure 3.
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Figure 2. The closed trajectories of the spectral eigenvalyiés) in the phasor scheme of
WACR parametrized b/ = 304 and by different winding numbers = 303 302 300, 296.
Since, WACR are dense in the— —4% limit, we have chosen, M such thati/(M +1) ~ 1.
The origin is at the vacuum state and signfah) is always positive elsewhere.

The most important limiting case of WACR and ACR As= —4" which implies
M — oo such thath/(M 4+ 1) — 1~ from equation (8). As the limit is sufficiently
approached, the spectral eigenvalueg)][jalways acquire alternating signs and weakly
admissible and admissible cyclic representations of the GHO are increasingly dense. At the
limit, the spectral period of ACR as well as WACR tends to infinity and they are the only
survivors in the spectrum. It will be shown in the next section that this limit is a particularly
important resource for the understanding of problems with the harmonic-oscillator quantum
phase at the infinite-period limit. We will now investigate a few physical applications of
the (W)ACR in the formulation of an algebraic approach to quantum phase. In particular,
the WACR developed here will be examined from this perspective in the section devoted
to the index theorem.
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Figure 3. Bands of weakly admissible (i.ef(0) = 0 and admissible (i.e. O< f(0))
representations for different values ¢{0) and k parametrized byM = 5, 10, 81, 257, 500.
The value ofh is varied withk according to equation (8).

3. An algebraic approach to the quantum-phase problem

In the formulation of the algebraic approach to quantum phase we will first follow a more
generalized approach than the GHO and consider the most general admissible cyclic algebra
as given by equations (1). The application of GHO to this problem will be investigated

in section 3.1 where we will need a specific example. Let's consider:thesector of

the finite-dimensional Fock spadéz), (0 < h £ M) spanned by the vectorg) where

0<n < M. The elementg, a' act on each finite-dimensional sector independently; hence,
a®™ . at™ . The polar decomposition of the generators in At sector is given by,

ah =EMFWN) @™ = FWEN (13)

where F(N) = F(N + M + 1) and we assume that the conditions for the WACR, namely,
0 < |F(N)|, or the ACR, namely, O< |F(N)| are satisfied. The unitary phase operator
acting onF' is defined by,

M

E) =" Im = 1)(m| + BuI M) (0| (14)
m=1

where| ;| = 1, as in equation (1), is required for the unitarity&}’, namely &0"&]" = 1

and £, £)""] = 0. With the conditions on the WACR or the ACR satisfied, the action

of equations (13) and (14) on the vectorsIEi}(j,) complies with equations (1). The phase

eigenstates,

. . 1 M
EM\p), = ¥ = ) @ 0<h<M 15
) ) ) Wn;, |m) (15)
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Figure 4. The closed trajectories of the spectral eigenvalfigs in the phasor scheme of ACR
parametrized by = 81 andh = 80,78, 72,54. The ACR are dense in the— —4" limit,
thus, in order to be able to sample more of them we have chiaskhsuch that: /(M + 1) ~ 1.
Other than conforming ta /(M + 1) ~ 1, the values ofi, M can be arbitrary as in other figures
which provides the freedom necessary to obtain an infinite variety of periods. Siacg(0),
there is no vacuum state in the spectra.

form an orthonormal complete set and resolve the identity as,

M
w@le =8  and  IT=Y [¢)un(dl (16)
h=0

with ¢, = 27h/(M + 1) + 6 and B, = €M+D% where 6y is an arbitrary reference
phase. Because of the fact that the underlying representation is admissible (in accord
with equation (1)) equations (13)—(16), define an algebraic approach to the quantum-phase
problem. The orthonormality and the quantization of phase eigenstates and eigenvalues are
natural algebraic consequences of the WACR or the ACR.

The equations (13)—(16) are in the same form as suggested by Pegg and Barnett [7].
The reason is that the form of the unitary phase operator in equation (14) can be written



Admissible cyclic representations 715

independently from the condition of admissibility of the underlying algebra [8]. The
admissibility is required for the polar decomposition in equation (13). In particular, the
Pegg—Barnett phase operator has the form

z 2 {M i dm=m%|m) (n|

Oy = . 0¢h|¢)h h<¢| = m 2 ei("—m)Zn/(M+1) _ 1} (17)

m,n=0

m#n
and the phase-generalized number commutator is,

(18)

o« g(m—mbo [f(n) — f(m)]Im)(n|
Z:O g-m2r/M+1) _ 1 °

m#n

The Hermitian phase operator in equation (17) and the unitary cyclic one in equation (15)
have diagonal representations in the same phase eigenspace. In the algebraic approach
presented here, the Hermitian Pegg—Barnett phase operator is replaced by the unitary one
in (15). As a result, the commutator in equation (18) is also replaced accordingly by

h+M
[E), F] = > [f(m) = f(m = Dllm — Ly(m| + Bl £(0) — F(M]IM) 0. (19)

m=h+1
In contrast to the Pegg—Barnett approach, where the cyclic property of the phase operator
is recovered at the commutation relation in equation (18), in the algebraic approach, the
admissible cyclic property of the representation is retained from the beginning at the operator
level. In fact, it can be seen from equations (14) and (15) that, the iderﬁj;fﬂilbs ég}fho}
wherehg = M + 1 and f(n) = f(n + M + 1) indicate this cyclic property.

The underlying cyclic representation and the fact that the identity operator is now cyclic
(.e.T=Y,ln)nl =Y 2" n)(nl) allow equation (14) to be written in a conventionally
more appealing form for the case whéy= 2xr/(M + 1), for (0 < r < M). For this case
we observe thag, = 1 and,

A h+M+1
Ef) =" Im—1)ml. (20)
m=h+1
For these set oy values, the commutation in equation (19) becomes
h+M+1

[Eg) . F(N] = > [f(m) = fm —D]lm — 1) (m|. (21)
m=h+1

If we apply the admissible cyclic GHO algebra in section Il to equation (21), the standard
harmonic oscillator result is recovered in the infinite period limit of NCR (te= 07)
which is known as the Susskind—Glogower—Carruthers—Nieto phase-number commutation
relation [9]. In this limit, equation (14) is also well defined and approaches to the unitary
version of the Pegg—Barnett phase operator. However, the condition on admissibility is not
respected for NCR in this limit. One of the important consequences is that, the standard
harmonic oscillator is realized as the infinite-period limit of a NCR. We will examine the
properties of the phase operator using the (W)ACR in the next section devoted to the index
theorem.

The properties and action of the operator in equation (20) on the vectors in the finite-
dimensional Fock space is identical to those of (14). Equation (20) implies that in each sector
IFﬁZ), there is a well-defined unitary phase operator and its eigerigtatés a superposition
of all vectors inIE‘f‘Z) as given by equation (15). This amounts to associating with each sector

]F;Z) a phase eigenvalug, and an eigenstatg),. The connection in the phase eigenspace
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between the orthogonal sectdt¥’ andF:** is provided by the discrete phase translation
operator

2N/ MED14), = ) s (22)
whereas a continuous translation by an arbitraryproduces phase superposition states,
- M 1 XM
grN — T , | — gm(bn—w+ro) 23
|6) ;,Zo e (Y0) B (o) = 3" mZ:O (23)

The yy translated phase states in (23) are no longer eigenstates of the unitary phase operator
in (14) or (20) unlessy = 27xr/(M + 1). The choice ofyy also provides a physical
interpretation of the arbitrary reference pha@ge A particular choice ofy # 0 relative to

6o = 0 is equivalent to a particular reference of the absolute orientation of the orthogonal
phase eigenstates. The continuous rotation of this absolute frame is generated by the unitary
operation in equation (23). A particular choicejaf determines the axis of rotation which

is given by the orientation of the invariant unit vecto:

N ) M
eV |v) = *|v) where lv) = th|¢)h )l =1 (24)
h=0
For a particular choice of, the direction of rotation is specified by the invertible condition
M
v, =e Z v T (vo) 0<h< M. (25)
h'=0

Equation (25) is an eigenvalue equation foand defines a linear set 68/ + 1) equations

which can be solved for a givepy,. From equations (24) and (15) it is also clear that

|v) cannot be an eigenstate of the phase operator in (14) or (20). In fact it is obvious
from equation (24) thaw) is a pure number state. Thys) fluctuates around its expected
orientation as observed from the phase eigenspace. The projection of its components on the
phase eigenspace yield broadened probability distributions given by

ol | 4y 12 _ 1 1-cosM + 1)(¢n — ¢w + Y0)
ln(@l€7°Y @) | = M+1?2  1—coddn—dn+70) (26)
The equation (26) yields a nonfluctuating distribution only when= 27r/(M + 1)
leading to|h<¢|ei1’°"7|¢>)h/|2 = 8p.n+r- On the other hand, for an arbitrary normalized state
W) = Zﬁ”zo ¥, |r), where|r)o< <pmy are vectors iy, the phase probability distribution
as observed in a general phase reference frame identifieg bgn be written as
P(n + v0) = ln(¢le™" |W)[? =

M 2
- - Z e 1r(@n+yo) v,
(M + l) r=0

whereyy redefines the reference phage A comparison of equations (26) and (27) yields
that yo should be interpreted on the same footingdgsvhich then verifies that the phase
fluctuations in an arbitrary stat@’) are strongly susceptible to the choiceégf In order

to show this effect more specifically, we consider an overcomplete expansion of the state
|W) over a continuous distributiof(yo) as,

) = / BP0 g W) =1 (28)

based on a fixedp), . In this case the phase probability distributifri¢,) is given by
2

P(n) = ln(@|W)[? = ‘fd)/o Pyo)lnw (o) O<h<M. (29)

0<h<M (27)
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Figure 5. The effect of the arbitrariness of the reference phase on the phase distriBuggn
for M = 80. Here (a) represents the maximal effect whens distributed continuously over
the range-7 < yo < 7, (b) corresponds to the case whgn= 27 /(M + 1) with the complete
set 0< r < M and (c) represents the case whenvaries over the complete set as in (b) but
shifted by an arbitrary phase Herea = /3.

Equation (29) implies that the phase probability M) is not only influenced by the
continuous distributiorP (o) but is also broadened by the factoy, (y0). This superfluous
broadening factor is obviously an artefact of the wrong choice of the basic phase coordinates
in (28). The broadening factor remains even if equation (28) is represented in a complete
basis withyy = 27r/(M + 1) + a with 0 < r < M wherea € R otherwise arbitrary.

The calculations forP(¢;,) are shown in figure 5 for three independently normalized
P(yo) distributions when: (a)P(y0) = Niexp(—yZ) is a continuous distribution over

the range—r < yp < 7 represented by the dotted curve; (b) the discrete distribution
P(y0) = Naexp(—y) Ziw:o 8[yo—2nr/(M + 1)] represented by the full curve and, (c) the
discrete distribution?(y0) = Nz exp(—y2) SN, 8[yo — 27r/(M +1) —a], wherew is not a
multiple of 27/(M + 1), is represented by the broken curve. The peak position of the phase
distribution in (c) is shifted and asymmetric because ofdhg 0 where we considered in
figure 5 the case = 7/3. TheN;'s for i = 1,2, 3 are appropriate normalizations so that
ffﬂ dyo P?(v0) = 1. In order to compare the widths of all cases (a), (b) and (c) the peak
position of the third distribution is shifted to zero. The results confirm that the choice of
the reference phase is generally influencial on the phase distribution. In particularyyhen

is a multiple of the phase quantum (i.e. case (b)) the broadening effect is minimized. In this
case, and puttingo andf, on the same footing, we notice that the phase operator adopts its
more conventional form in equation (20). T — oo limit in equation (29) deserves a
particular attention. In this limit we have lig. o T (y0) = 8(¢ — @' + o) and the phase
distribution is purely determined by that of the stiie i.e. P(¢) = P?(¢' — ¢). Hence,

at the infinite period limit the phase probability distribution is immune to the choice of the
reference phase.



718 T Hakioglu

Before we discuss the application of this algebraic approach in the next section it should
be stressed that one can also generalize equation (22) and (23) and their consequences to
rotations in the finite-dimensional number operator eigenspace using the unitary operator
(é;LM)”D whereng € Z. Let us denote the complete set of orthonormal phase vectors
{I¢)nto<n<m @s elements of théM + 1)-dimensional phase spag,;. ThenP,, provides
the basis vectors of the dual representation to the finite-dimensional FockIspastadied
previously in this section. Similar to the{ + 1)-independent sectors labelled by (h) in
F;ﬁ), the dual spac®,, has (M+1) independent sectors where we denote each independent
sector by}P’g’;) with 0 < n < M. For each independent sectara Fock vectoln) can be
associated such that

1 n+M

N VMt 1 Z e " g), (D) tn<ncninm € P (30)
h=n

Similar to the equation (22), here, the action of the operaig‘g)”o is to connect two
different sectors of the dual spat§ andP!\"" as

(&5)""In) = |n + no). (31)

For arbitraryng one obtains a finite set of generalized representations whedenotes
the index of the reference state. Fgy = 0 the conventional Fock-space representation is
recovered. The further implications of this dual picture between the representatiBgs in
andl,, are outside the scope of this work and we will not pursue this formalism here.
Coming back to the initial problem after this short excursion into the dual picture, we
will show in the next section that there exists a singular infinite-period limit in the spectrum
of (W)ACR which identifies the incurable anomaly of the harmonic-oscillator quantum-
phase operator. In order to examine this limit, we use a prototype nonlinear oscillator
which is derived from the GHO, of which the spectrum is of WACR type, yielding the
standard harmonic oscillator at the very limit = oo. This particular oscillator will then
be used as a tool to demonstrate in its spectrum, a singular behaviour of the hitato.
We discuss the consequences of this result and verify that the harmonic oscillator does not
provide the appropritate basis to search for the Hermitian quantum phase algebraically.
This, however, is not a proof based on a uniqueness theorem; neither do we suggest that,
the GHO is the most general oscillator where WACR or ACR can be found. Whether
there are other admissibly cyclic algebras which yield the standard harmonic oscillator in
their proper limit, is a legitimate question from the index-theorem point of view which was
recently examined by Fujikawa [10] for the free-photon field. We will now investigate the
implications of the index theorem on equations (13)—(16) within the context of (W)ACR.

|n)

3.1. The index theorem
Fujikawa examined the index condition for the free photon fiélds' by
I = Tr{e ?'b/®y _ Tr(ebb'/%) (32)

wherec is a real but arbitrary constant. The equation (32) puts a stringent conditidn on
for the unitarity of the photon phase operat#(¢). If the free photon fields were polar
decomposed into

b=E@WVN b =VNEI (@) (33)

with N as Hermitian and(®)ET(®) = ET(®)E(P) = 1 as required by the unitarity, the
trace identity ensures that= 0 independently frome. Here, we made a formal distinction
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between (®) for the free-photon field ané¢ in equation (14) and (20). On the other hand,
the direct application of the commutatdr, pi] = 1 with the vacuum conditio®|0) = 0
implies that/ = 1 restating Dirac’s original paradox in a different language. The paradox
clearly shows the impossibility of recovering a unitary phase operator in Dirac’s approach.
The index/ simply counts the difference in the number of zero eigenvalues in the spectrum
of b'h and bb! and it is clearly robust to any unitary transformation &rb’. A quick
remedy can be provided by folding the infinite-dimensional Fock space into an infinitely
many independent finite sectors (i/9. of M dimensions and connecting the ends of each
piece so that,

M
E@) =" |n—1)(n|+ plM)(0|

r=t (34)
R R _ M
b=E@VN =Y an—1)n|
n=1

and similarly forb". The index is as required (i.é.= 0), the phase is unitary and the polar
decomposition is satisfied. Equation (34) is basically the starting point of the Pegg—Barnett
approach to truncated Fock spaces. A comparison between the phase operator in (34) and
that obtained from (W)ACR in equation (14) shows that they are very similar. Although

the quantization of the phase eigenvalues in orthogonal phase eigenspaces is assumed in the
Pegg—-Barnett approach, they naturally arise as a result of cyclic property of the algebra as
demonstrated in equations (13)—(16).

We now look for other examples of this algebraic approach for which the generally
deformed cyclic algebra in equation (1) is a candidate. In fact, the condition for the
vanishing index for a generalized oscillator in a finite-dimensional Fock space coincides
with the condition for the periodic spectrum

R . M
I =Tr{eg" Wy — T N0/ = el W/ o/t =0 0< f(n) Vn
n=0

(35)

iff £(0)=f(M+1). HereF(N) is the generalized number operator with eigenvalfies
as defined below equation (1). Now using the expressions (13) and (14) the generators of
any admissibly cyclic algebra can be constructed as,

M
a=Yy_ fY2m)n—1)nl+ BufM*(M + DIM)O]. (36)
n=0

Equation (36) implies that thperiodic vacuum conditioris not in contradiction with the

rest of the picture:(0ja’a|0) = (M|aa'|M) = f(0) = f(M + 1). Hence thea'a andaat
operators have identical spectra which make the index vanish. For instance, the specific
ACR of the g-deformed oscillator has been examined in [11] in this context.

Since the condition on the periodic spectrum for the existence of the unitary phase is
strict, one has to be careful in calculating the index in a particular algebra. The périod
can be arbitrarily large but not infinite before the end of all calculations sincéfthe oo
limit is singular atM = oo. Infact, this recipe is also independent of the algebra. For
instance, from equation (11), at thé — oo limit the WACR with f(0) = 0 yields the
spectrumjf.(n) = n/(2n — 1). A direct application of this to calculate the index yields
I = 1; whereas, for finitel one obtains a result = 0 independent of.
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Let us consider the compositigfio f(r) using the spectrum in equation (11) taking it
as a simple mathematical tool in the analysis of the infinite-period limit. We first construct

Jfoo 0 foo(n) as,

fooOfoc(n)z % =n. (37)
-1
Hence, one obtains the harmonic oscillator spectrum. The singularity at the infinite period
limit becomes transparent if the order of the limiting process is changed. 4 oo limit
is taken at the last stage by using equation (11), one finds that

0 ifn=0
Mlim fofm=41 ifn=1 (38)
% if 2 < n.

For finite M it is clear from equation (11) thaf o f(n) = fo f(n + M + 1). The
spectrum of f o f(n) is always positive and cyclic provided thgt(n) is positive and

cyclic for all n. This implies that, the spectrunf o f(n) corresponds to yet another
generally deformed oscillator with a WACR of which singular limit¥t= oo yields the
standard harmonic oscillator. Whether there are more examples of such nonlinear oscillators
with this property atM = oo is currently an open question for the author. Although the
oscillator f o f(n) is not of much practical importance, it gives a clear demonstration of the
connection between the two problems, namely the absence of a Hermitian quantum phase
and the singular behaviour of the spectrum at the infinite-period harmonic-oscillator limit.
Hence, the standard harmonic oscillator’s linear spectrum is placed on the singular infinite
period limit of the NCR in the case of GHO or of the ACR in the case of the algebra of
which spectrum is the composition given by equation (37). This result naturally renders any
truncation and limiting scheme within an infinite-dimensional Fock space (although it might
be convenient from the practical calculation point of view) as nonalgebraic and unnatural.

4. Conclusions

In this work we have investigated various cyclic representations of the GHO and used it as
a tool to analyse the properties of the quantum-phase operator in an algebraic perspective.
We have shown that, in certain ranges of the deformation parameter, the generalized
homographic oscillator produces a rich variety of cyclic representations among which the
weakly admissible and the admissible ones are particularly important tools from the phase
operator point of view. The algebraic properties of the phase operator in generalized ACR
are studied. The dependence of the phase fluctuations on the choice of reference frame in
the phase eigenspace is confirmed and shown that, if the reference phase is also quantized
in units of the fundamental quantum phase the superfluous phase fluctuations arising from
the arbitrariness of reference phase can be minimized. For this choice of reference phase,
the phase operator also takes its Susskind—Glogower—Carruthers—Nieto-type conventional
form.

The problems in constructing a Hermitian quantum phase in the harmonic oscillator
algebra is reaffirmed to be connected with the nonalgebraic singular behaviour at infinite-
period limit. This result is tested on a new spectrum (i.e. equations (37) and (38)) which is
admissibly cyclic with the singular limit properly coinciding with the harmonic oscillator.
The combination of several restrictions such as admissibility and the existence of a polar
decomposition of the elements require that one has to stay within an admissibly cyclic
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representation and let the size of the corresponding Hilbert space approach to infinity at the
final level of calculations. In this respect, we suggest as a side remark that, the conceptual
basis underlying the limiting procedure which was first examined by Lexhal [12] and
explicitly considered by Pegg and Barnett [7] in connection with the phase problem in
guantum optics can also be made transparent, from this formal algebraic point of view, as
a recipe to avoid the singular ambiguity in the infinite spectrum before the calculations are
finalized.

There are a number of other interesting properties of the ACR. In particular, the
construction of their minimum-uncertainty states and the properties of quantum fluctuations
in these states are currently being examined. From a statistical point of view, they also
provide a generalized outlook onto the concept of parastatistiasGrden [13] as well as
Greenberg and Mohapatra [14]. These are out of the current scope of this work which might
be addressed in another publication.
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